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ABSTRACT

Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology
Evaluation (FORESITE) flight tests with the NASA Langley Research Center’s research Boeing 757 were
acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using
the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with
visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has
been computed for hundreds of FORESITE images, and for major classes of imaging—terrestrial (consumer),
orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging.
The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the
degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends
relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance
for the various image classes. Overall results support the idea that in most cases that do not involve extreme
reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for
very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved.
Further, the data suggest that these visual quality metrics can be used as external standalone metrics for
establishing performance parameters.

1. INTRODUCTION

During August and early September, 2005, the research Boeing 757 of NASA Langley Research Center was
used to conduct a series of test flights under the Follow-On Radar, Enhanced and Synthetic Vision Systems
Integration Technology Evaluation (FORESITE) program to test and demonstrate a number of new aviation
safety technologies. One of our goals in participating in FORESITE was to acquire a high volume of aerial
imagery. In particular, we were interested in acquiring imagery under visibility conditions that mimicked
situations under which the pilot relies on instrumentation to fly the plane rather than the visibility of the
terrain. The imagery that was acquired in these poor visibility conditions was needed to test a new metric for
visual quality, both before and after non-linear image enhancement using the Visual Servo (VS)1 and Multiscale
Retinex (MSR) methods.2–5 The VS adds an active visual quality measurement and feedback control element
to the passive MSR processing, and extends performance from wide dynamic range imaging to encompass all
imaging conditions including the very narrow dynamic range associated with poor visibility conditions such as
fog, haze, rain, snow, dust, and dim light. The MSR has been implemented in hardware to provide real-time,
video enhancement of flight data.5–7 This hardware was flight-tested during FORESITE, and the experimental
results and a description of the hardware are provided in a companion paper.8

The FORESITE experiments were conducted during the height of late summer stagnant air conditions. As
a result, visibility along the flight paths between the Langley Air Force Base, Hampton, VA and the NASA
Wallops Flight Facility, Wallops Island, VA was seriously impaired by conditions that ranged from severe haze
to combinations of severe haze interspersed with patchy clouds. Human observers on the test flights routinely
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reported that the ground terrain was only very faintly visible, and on several flights there was no visibility of the
ground terrain. For the FORESITE flights in which we participated, such conditions were prevalent at altitudes
greater than 2000 feet, but did not exist for lower altitudes. Therefore we were able to acquire considerable
image data at or exceeding the extremes of visibility. Data were collected from a total of eight flights in the
form of 100–200 images per flight together with limited anecdotal human assessments of visibility conditions.
The images were taken with a Nikon D1 digital color (still) camera shooting through the side window of the
aircraft. From each flight, 50 images representative of very poor visibility were selected and enhanced with VS
processing. This formed the basis for computing large aggregate visual statistics for pre- and post-enhancement
imagery for one (visual) metric, the Visual Contrast Measure (VCM). The same measure was then applied
to large aggregates of image data for other major image classes: consumer images, NOAA aerial photos of
hurricane damage, underwater images, and Earth and Mars orbital images. The VCM was computed for both
pre- and post-enhancement imagery in all cases. This provides the most general context possible for analyzing
and interpreting the performance of the enhancement process and the suitability of the VCM as an overall
metric of that performance.

The VCM is an internal, primary metric that the VS uses for “smart” control of MSR enhancement.1 In this
paper, however, we examine the VCM as a stand-alone external metric that can be used to determine visual
quality. Computationally, the VCM is given by

VCM = 100 ∗Rv/Rt (1)

where Rv is the number of regions in an arbitrary image that exceed a specific threshold for regional signal
standard deviation, and Rt is the total number of regions into which the image has been divided. Therefore VCM
scores should be interpreted as answering the question: “How much of the image frame has good contrast?”
A VCM score of zero simply means there were no regions of good contrast in that specific image. As we will
see, quite a number of FORESITE images did possess zero or near-zero scores. So, in this crude sense, we can
conclude that we were able to capture imagery largely near, or at, the limits of visibility. We will also see that the
FORESITE VCM scores are much lower than the scores for other (obviously) poor visibility classes—underwater
imaging and NOAA aerial surveys of hurricane damage taken during unavoidable haze conditions.

For all of the large aggregate statistics to be presented, attempts were made to avoid any bias due to a
specific sensor or mission factor. Therefore, imagery for the various classes was selected to be as inclusive as
possible. Earth orbital imagery came from Quickbird, IKONOS—the highest quality data perhaps—, astronaut
photography of earth, and Landsat, and included wide ranging atmospheric conditions. The best imagery
that we were able to obtain was acquired during very clear atmospheric conditions, while the worst was hazy
but not totally obscured. Extremely obscured images are likely to simply be left out of public archives, so it
should be understood that extremes of visibility are not likely to be encountered in these archives. With this
understanding, we can still frame a context for understanding the FORESITE data where we were intentionally
trying to get the “worst” case possible. The Mars image data were compiled from all existing Mars orbital
image sensors—Mars Global Surveyor, Mars Odyssey, and Mars Express. For all classes diverse subject matter,
terrain, etc., were included to attempt to avoid any statistical biases due to subject matter. Subject matter or
scenes which are feature-impoverished were not included as these represent the “moot” case where there isn’t
anything to enhance or measure.∗

2. TYPICAL EXAMPLES AND OVERALL VISUAL ASSESSMENT

In a companion paper,9 we show the impact of VS processing on a more extensive collection of FORESITE and
NOAA hurricane damage aerial photos. So in this paper we will give just a few typical examples from these
and other image classes to convey the connection between the VCM scores and visual judgment. In Figure 1
we show examples that cover the full range of VCM scores and allow the reader to judge that the scores track
degrees of visual quality in a useful quantitative way.

The examples show the usefulness of the VCM score, but also expose a shortcoming that arises because the
VCM was originally designed as a control function for the VS. This shortcoming is that the VCM score tends

∗See the section on ”Data Sources” for the websites that we used.



Figure 1. Typical examples of images and their VS enhancements: (a) FORESITE data with VCM score of zero; (b)
NOAA Hurricane Wilma damage aerial photo with single-digit VCM score. The VCM scores for the VS processed image
are much higher than the VCM scores for the unprocessed data. The correlation between the VCM scores and the visual
quality is clear from the visual impact on scene visibility.



Figure 1. (continued) More examples of images and their VS enhancements (c) International Space Station Earth
observations photo; (d) lower quality consumer digital photo; (e) higher quality consumer digital photo. The un-enhanced
image in (e) is typical of the best contrast that was encountered in all of the classes of imagery that we sampled. The
VCM scores for the VS processed image are much higher than the VCM scores for the unprocessed data. The correlation
between the VCM scores and the visual quality is clear from the visual impact on scene visibility.
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Figure 2. Summary of FORESITE flight data statistics. The individual flights are labeled by their official designations
assigned by the FORESITE program.

to zero even when there is still some weak scene visibility, and that the perceived visual quality rises somewhat
faster than the VCM scores at the low score range. In other words, a slow increase in the VCM scores from
zero into single digits, and then low teens, is accompanied by a dramatic increase in (perceived) visual quality.
Beyond this initial sluggishness, as the score continues to rise, visual quality tracks the VCM in a visually logical
manner. So VCM scores > 10 do track visual judgment reasonably well. A score between 0–9 in the following
large aggregate data sets should be interpreted with this behavior in mind.

3. LARGE AGGREGATE STATISTICS FOR FORESITE DATA

The eight data acquisition flights in the FORESITE experiments exhibit overall consistency in the VCM statis-
tics. The variations in the data reflect mostly a range from poor visibility to extremely poor visibility. As we
will show later, the VCM scores of both original and VS enhanced imagery for FORESITE are lower than we
encountered in any other image class we analyzed. The summary of the eight flights is shown in Figure 2.

Each bar in Figure 2 represents 50 images selected from the larger set of about 100–200 images taken during
flight. Other imagery that was acquired either on ground or during takeoff and landing phases of the flight
exhibits significantly better visibility because of the much lower altitude. Such imagery was not used in our
analysis since we were interested in analyzing conditions with the poorest visibility. VCM scores for the original
images range between 0–2, but most were between 0–1 indicating very poor visibility. VS enhanced scores range
between 11–23 with an average of 17. Since the original scores were at 0–2 with an average of 1, the average
increase in score due to the servo enhancement process is 16. Note that we have previously discussed that visual
quality rises rapidly relative to the VCM score advancing from single digits to teens, so this amount of increase
goes with a relatively large perceived increase in visual quality for the VS enhanced FORESITE imagery.
However, we will see that this falls short of the increase in VCM scores achieved by VS enhancements of the
other major images classes. This smaller score increase for FORESITE imagery is consistent with our previous
work on post-enhancement visibility limits.1 The extremely poor visibility conditions during FORESITE flights
result in sensor noise being a relatively larger component of image signal variation, and this noise sets the
ultimate limit on post-enhancement visibility improvement.
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Figure 3. Comparison of FORESITE data with major classes of imagery. The data was obtained with 100–200 images
from each image class.

4. COMPARISON OF LARGE AGGREGATE STATISTICS FOR MAJOR IMAGE
CLASSES

We now summarize the FORESITE data in the context of similar data for other image classes. For the other
image classes, the aggregate data was computed from 100–200 images within each class, with very diverse scene
content. The image classes were selected in order to elicit interesting scientific comparisons, and (hopefully) find
a plausible explanation for any trends—especially unexpected ones—that emerge. Because the image classes
represent all major classes that we thought would exhibit possible statistical differences, we are confident that
the results are general in nature. The VCM aggregate scores for both original and VS enhanced data are shown
in Figure 3.

Of all the image classes, the FORESITE data, both pre- and post-enhancement, has the lowest aggregate
VCM scores. This is not at all surprising since one of our objectives for FORESITE was to acquire poor
visibility imagery. Further, while images with this poor a visibility may often be acquired, they do not often
make it into image archives since viewers of galleries are not interested in looking at basically blank frames. So
the FORESITE flights did fulfill our need for some very extreme visibility image data not available from other
sources.

The big surprise to us was that the next lowest scoring class of both original and enhanced data was the
Mars orbital imagery from three different on-going planetary missions—Global Surveyor, Odyssey, and the
ESA’s Mars Express. We do not think it plausible that any Mars atmospheric phenomena is responsible for
the poor imagery: only rare images show any signs of dust storms and none of these were included in this data
sample. Rather, we favor the explanation that Mars imagery lacks a dimension intrinsic to most terrestrial
imaging, namely, reflectance variation. While some reflectance changes occur on the Martian surface, their
contribution to image signals is relatively minor compared to the contribution due to topographical variations.
This impoverishment of reflectance variation on Mars, and the rather static nature of the planet (images of a
Mars location taken years apart are usually rather similar), are our best explanation for the data trend we show
in Figure 3.



The underwater image class provided a surprise of a different sort. The VCM scores for underwater imagery
are much higher in both pre-and post-enhancement cases than was expected. We certainly would have expected
underwater turbidity to be even more severe and limiting than atmospheric turbidity, yet the underwater image
data was on par with the Earth orbital imaging class statistics. We suspect that this may be explainable as
being due to bias beyond our control: underwater photographers probably take images only in relatively low
turbidity conditions, and, either do not take shots in worse conditions or else omit the “blank” frames from
their archives. Thus, the underwater data that we were able to access is only representative of the visibility
range over which images are likely to be taken and posted in galleries.

As we did expect, however, the consumer image class is the highest scoring, again for pre- and post-
enhancements. This simply reflects the fact that most everyday photos are not taken in extreme turbidity
conditions or very dim lighting.

The NOAA hurricane damage aerial imagery deserves some discussion. These images should not be consid-
ered representative of aerial photography as a whole. The urgency of the need for damage assessment in the
wake of the major hurricanes requires that photography flights be made as soon as possible after the hurricane.
During the peak of the hurricane season this means flights are scheduled as soon as cloud cover is past. This is
also, though, a time of very high humidity and significant amounts of haze. The hurricane data is an aggregate
of aerial photos of damage by hurricanes Katrina, Wilma, Ivan, Ophelia, Dennis, and Rita, so the data can
be considered representative of the visibility in the aftermaths of hurricanes during the peak season and high
humidity conditions.

Finally, an interesting overall trend is obvious from the data shown in Figure 3. Most image classes do
approach, or achieve, a post-enhancement score of 45–55. The only exceptions are Mars orbital imagery, and
the FORESITE data. Therefore, for most terrestrial imaging, even from Earth orbit, we can conclude that
the VS enhancement performs well and approaches a maximum achievable contrast score. The FORESITE
data falls short of this only because it is an extreme poor visibility case, and sensor noise has begun to limit
the magnitude of contrast enhancement achievable with the processing. Even so, the VS enhancements of the
FORESITE data do represent major visibility improvements, especially when we recall that visual quality rises
very rapidly as the VCM scores increase from zero through single digit values on into values in the teens which
is the case for the FORESITE data.

5. CONCLUSIONS

A study of the Visual Contrast Measure intrinsic to the Visual Servo (active) image enhancement processing
suggests that it can also serve as a stand-alone metric of image quality. For the VCM scores to be interpreted
properly as a visual metric, we found that visual quality rises rapidly as the VCM scores rise from zero into
the teens, but thereafter seems to track visual assessments in a more linear manner. Further, we see room for
improving the VCM as a stand-alone visual metric by extending the current cut-off of zero to a lower range.
This can be accomplished by softening the sharp cutoff in the original thresholding and classification process.

The analysis of the large aggregate statistics for FORESITE flight data and other major images classes
supports some additional conclusions. The FORESITE data was the poorest visibility image data that we have
encountered and satisfied our image acquisition goal for the flight experiments. The VS enhancements of the
FORESITE data did substantially improve visibility as quantified by significant increases in the VCM scores.
The overall trends in the large aggregate statistics support the idea that the Visual Servo for most imaging
approaches or achieves a maximum visual contrast possible and that this coincides with VCM scores of 45–55.
The exceptions to this were Mars orbital imaging and the FORESITE data. The former may be limited because
the imagery is largely topographic, while the latter is limited because sensor noise is a larger component of image
data in extreme poor visibility imaging.

Image Data Sources

1. NOAA aerial photos of hurricane damage: http://www.ngs.noaa.gov/index.shtml

2. Mars orbital images:



(a) Mars Global Surveyor MOCS Narrow Angle Images: http://www.msss.com/moc gallery/

(b) Mars Express: http://www.esa.int/esa-mmg

(c) Mars Odyssey: http://mars.jpl.nasa.gov/odyssey/gallery/images.html

3. Earth Orbital Images:

(a) Gateway to Astronaut Photography http://eol.jsc.nasa.gov/

(b) Human Spaceflight( Shuttle and International Space Station)
http://www.spaceflight.nasa.gov/gallery/index.html

(c) Quickbird https://www.digitalglobe.com/sample imagery.shtml

(d) IKONOS: http://www.spaceimaging.com/gallery/default.htm

4. Consumer Images:

http://www.pbase.com

5. Underwater Images:

(a) http://www.dancingfish.com/main.php

(b) http://diver.net/kathy/

(c) http://www.ramblincameras.com/Rcamindex.htm
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